Part Number Hot Search : 
MAX82 MCH6612 FOD420S GH1420 N4751 TC60S 658C3C3 67200
Product Description
Full Text Search
 

To Download LPC1111FHN33101 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash and 8 kB SRAM
Rev. 01 -- 16 April 2010 Product data sheet
1. General description
The LPC1111/12/13/14 are a ARM Cortex-M0 based, low-cost 32-bit MCU family, designed for 8/16-bit microcontroller applications, offering performance, low power, simple instruction set and memory addressing together with reduced code size compared to existing 8/16-bit architectures. The LPC1111/12/13/14 operate at CPU frequencies of up to 50 MHz. The peripheral complement of the LPC1111/12/13/14 includes up to 32 kB of flash memory, up to 8 kB of data memory, one Fast-mode Plus I2C-bus interface, one RS-485/EIA-485 UART, up to two SPI interfaces with SSP features, four general purpose counter/timers, a 10-bit ADC, and up to 42 general purpose I/O pins.
2. Features and benefits
System: ARM Cortex-M0 processor, running at frequencies of up to 50 MHz. ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC). Serial Wire Debug. System tick timer. Memory: 32 kB (LPC1114), 24 kB (LPC1113), 16 kB (LPC1112), or 8 kB (LPC1111) on-chip flash programming memory. 8 kB, 4 kB, or 2 kB SRAM. In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader software. Digital peripherals: Up to 42 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors. GPIO pins can be used as edge and level sensitive interrupt sources. High-current output driver (20 mA) on one pin. High-current sink drivers (20 mA) on two I2C-bus pins in Fast-mode Plus. Four general purpose counter/timers with a total of four capture inputs and 13 match outputs. Programmable WatchDog Timer (WDT). Analog peripherals: 10-bit ADC with input multiplexing among 8 pins.
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Serial interfaces: UART with fractional baud rate generation, internal FIFO, and RS-485 support. Two SPI controllers with SSP features and with FIFO and multi-protocol capabilities (second SPI on LQFP48 and PLCC44 packages only). I2C-bus interface supporting full I2C-bus specification and Fast-mode Plus with a data rate of 1 Mbit/s with multiple address recognition and monitor mode. Clock generation: 12 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used as a system clock. Crystal oscillator with an operating range of 1 MHz to 25 MHz. Programmable watchdog oscillator with a frequency range of 7.8 kHz to 1.8 MHz. PLL allows CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. May be run from the system oscillator or the internal RC oscillator. Clock output function with divider that can reflect the system oscillator clock, IRC clock, CPU clock, and the Watchdog clock. Power control: Integrated PMU (Power Management Unit) to minimize power consumption during Sleep, Deep-sleep, and Deep power-down modes. Three reduced power modes: Sleep, Deep-sleep, and Deep power-down. Processor wake-up from Deep-sleep mode via a dedicated start logic using up to 13 of the functional pins. Power-On Reset (POR). Brownout detect with four separate thresholds for interrupt and forced reset. Unique device serial number for identification. Single 3.3 V power supply (1.8 V to 3.6 V). Available as 48-pin LQFP package, 33-pin HVQFN package, and 44-pin PLCC package.
3. Applications
eMetering Alarm systems Lighting White goods
4. Ordering information
Table 1. Ordering information Package Name LPC1111FHN33/101 LPC1111FHN33/201 LPC1112FHN33/101 HVQFN33 HVQFN33 HVQFN33 Description HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm Version n/a n/a n/a Type number
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
2 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 1.
Ordering information ...continued Package Name Description HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm Version n/a n/a n/a n/a n/a HVQFN33 HVQFN33 HVQFN33 HVQFN33 HVQFN33 LQFP48 LQFP48 PLCC44
Type number LPC1112FHN33/201 LPC1113FHN33/201 LPC1113FHN33/301 LPC1114FHN33/201 LPC1114FHN33/301 LPC1113FBD48/301 LPC1114FBD48/301 LPC1114FA44/301[1]
[1] Sampling Q3 2010.
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x sot313-2 1.4 mm LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x sot313-2 1.4 mm PLCC44; plastic leaded chip carrier; 44 leads sot187-2
4.1 Ordering options
Table 2. Ordering options Flash Total SRAM 2 kB 4 kB 2 kB 4 kB 4 kB 8 kB 8 kB 4 kB 8 kB 8 kB 8 kB UART RS-485 1 1 1 1 1 1 1 1 1 1 1 I2C/ Fast+ 1 1 1 1 1 1 1 1 1 1 1 SPI ADC channels 8 8 8 8 8 8 8 8 8 8 8 Package Type number LPC1111 LPC1111FHN33/101 LPC1111FHN33/201 LPC1112 LPC1112FHN33/101 LPC1112FHN33/201 LPC1113 LPC1113FHN33/201 LPC1113FHN33/301 LPC1113FBD48/301 LPC1114 LPC1114FHN33/201 LPC1114FHN33/301 LPC1114FBD48/301 LPC1114FA44/301
[1] Sampling Q3 2010.
8 kB 8 kB 16 kB 16 kB 24 kB 24 kB 24 kB 32 kB 32 kB 32 kB 32 kB
1 1 1 1 1 1 2 1 1 2 2
HVQFN33 HVQFN33 HVQFN33 HVQFN33 HVQFN33 HVQFN33 LQFP48 HVQFN33 HVQFN33 LQFP48 PLCC44[1]
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
3 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
5. Block diagram
XTALIN XTALOUT RESET
SWD
LPC1111/12/13/14
IRC TEST/DEBUG INTERFACE CLOCK GENERATION, POWER CONTROL, SYSTEM FUNCTIONS clocks and controls FLASH 8/16/24/32 kB slave GPIO ports PIO0/1/2/3 HIGH-SPEED GPIO slave AHB-LITE BUS SRAM 2/4/8 kB slave slave CLKOUT
POR
ARM CORTEX-M0
system bus
ROM
slave AHB TO APB BRIDGE RXD TXD DTR, DSR(1), CTS, DCD(1), RI(1), RTS CT32B0_MAT[3:0] CT32B0_CAP0 CT32B1_MAT[3:0] CT32B1_CAP0 CT16B0_MAT[2:0] CT16B0_CAP0 CT16B1_MAT[1:0] CT16B1_CAP0 UART 10-bit ADC AD[7:0] SCK0, SSEL0 MISO0, MOSI0 SCK1, SSEL1 MISO1, MOSI1 SCL SDA
SPI0 32-bit COUNTER/TIMER 0 SPI1(1) 32-bit COUNTER/TIMER 1 I2C-BUS 16-bit COUNTER/TIMER 0 16-bit COUNTER/TIMER 1 WDT IOCONFIG SYSTEM CONTROL PMU
002aae696
(1) LQFP48 and PLCC44 packages only.
Fig 1.
LPC1111/12/13/14 block diagram
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
4 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
6. Pinning information
6.1 Pinning
40 PIO1_4/AD5/CT32B1_MAT3/WAKEUP
39 SWDIO/PIO1_3/AD4/CT32B1_MAT2
46 PIO1_6/RXD/CT32B0_MAT0
47 PIO1_7/TXD/CT32B0_MAT1
45 PIO1_5/RTS/CT32B0_CAP0
38 PIO2_3/RI/MOSI1
42 PIO1_11/AD7
43 PIO3_2/DCD
PIO2_6 PIO2_0/DTR/SSEL1 RESET/PIO0_0 PIO0_1/CLKOUT/CT32B0_MAT2 VSS XTALIN XTALOUT VDD PIO1_8/CT16B1_CAP0
1 2 3 4 5 6 7 8 9
37 PIO3_1/DSR 36 PIO3_0/DTR 35 R/PIO1_2/AD3/CT32B1_MAT1 34 R/PIO1_1/AD2/CT32B1_MAT0 33 R/PIO1_0/AD1/CT32B1_CAP0 32 R/PIO0_11/AD0/CT32B0_MAT3 31 PIO2_11/SCK0 30 PIO1_10/AD6/CT16B1_MAT1 29 SWCLK/PIO0_10/SCK0/CT16B0_MAT2 28 PIO0_9/MOSI0/CT16B0_MAT1 27 PIO0_8/MISO0/CT16B0_MAT0 26 PIO2_2/DCD/MISO1 25 PIO2_10 PIO2_9 24
002aae697
48 PIO3_3/RI
44 VDD
LPC1113FBD48/301 LPC1114FBD48/301
PIO0_2/SSEL0/CT16B0_CAP0 10 PIO2_7 11 PIO2_8 12 PIO2_1/DSR/SCK1 13 PIO0_3 14 PIO0_4/SCL 15 PIO0_5/SDA 16 PIO1_9/CT16B1_MAT0 17 PIO3_4 18 PIO2_4 19 PIO2_5 20 PIO3_5 21 PIO0_6/SCK0 22 PIO0_7/CTS 23
Fig 2.
Pin configuration LQFP48 package
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
41 VSS
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
5 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
42 PIO1_4/AD5/CT32B1_MAT3/WAKEUP
41 SWDIO/PIO1_3/AD4/CT32B1_MAT2
PIO1_7/TXD/CT32B0_MAT1
PIO1_6/RXD/CT32B0_MAT0
PIO1_5/RTS/CT32B0_CAP0
PIO2_0/DTR/SSEL1
RESET/PIO0_0 PIO0_1/CLKOUT/CT32B0_MAT2 VSS
7 8 9
40 PIO2_3/RI/MOSI1 39 R/PIO1_2/AD3/CT32B1_MAT1 38 R/PIO1_1/AD2/CT32B1_MAT0 37 R/PIO1_0/AD1/CT32B1_CAP0 36 R/PIO0_11/AD0/CT32B0_MAT3 35 PIO2_11/SCK0 34 PIO1_10/AD6/CT16B1_MAT1 33 SWCLK/PIO0_10/SCK0/CT16B0_MAT2 32 PIO0_9/MOSI0/CT16B0_MAT1 31 PIO0_8/MISO0/CT16B0_MAT0 30 PIO2_2/DCD/MISO1 29 PIO2_10 PIO2_9 28
002aaf020
44 PIO1_11/AD7 PIO2_5 24
PIO2_6
VDD PIO2_4 23 1
XTALIN 10 XTALOUT 11 VDD 12 PIO1_8/CT16B1_CAP0 13 PIO0_2/SSEL0/CT16B0_CAP0 14 PIO2_7 15 PIO2_8 16 PIO2_1/DSR/SCK1 17 PIO0_3 18 PIO0_4/SCL 19 PIO0_5/SDA 20 PIO1_9/CT16B1_MAT0 21 PIO3_4 22 PIO3_5 25 PIO0_6/SCK0 26 PIO0_7/CTS 27
LPC1114FA44/301
Fig 3.
Pin configuration PLCC44 package
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
43 VSS
6
5
4
3
2
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
6 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
PIO1_4/AD5/CT32B1_MAT3/WAKEUP 26
terminal 1 index area PIO2_0/DTR RESET/PIO0_0 PIO0_1/CLKOUT/CT32B0_MAT2 XTALIN XTALOUT VDD PIO1_8/CT16B1_CAP0 PIO0_2/SSEL0/CT16B0_CAP0 1 2 3 4 5 6 7 8
32
31
30
29
28
27
25 24 23 22 21 20 19
SWDIO/PIO1_3/AD4/CT32B1_MAT2
PIO1_6/RXD/CT32B0_MAT0
PIO1_7/TXD/CT32B0_MAT1
PIO1_5/RTS/CT32B0_CAP0
PIO1_11/AD7
PIO3_2
VDD
R/PIO1_2/AD3/CT32B1_MAT1 R/PIO1_1/AD2/CT32B1_MAT0 R/PIO1_0/AD1/CT32B1_CAP0 R/PIO0_11/AD0/CT32B0_MAT3 PIO1_10/AD6/CT16B1_MAT1 SWCLK/PIO0_10/SCK0/CT16B0_MAT2 PIO0_9/MOSI0/CT16B0_MAT1 PIO0_8/MISO0/CT16B0_MAT0
33 VSS 10 11 12 13 14 15 PIO0_6/SCK0 16 PIO0_7/CTS 9
18 17
PIO0_4/SCL
PIO0_5/SDA
PIO0_3
PIO3_4
PIO1_9/CT16B1_MAT0
PIO3_5
002aae698
Transparent top view
Fig 4.
Pin configuration HVQFN 33 package
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
7 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
6.2 Pin description
Table 3. Symbol PIO0_0 to PIO0_11 LPC1113/14 pin description table (LQFP48 package) Pin Type I/O Description Port 0 -- Port 0 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 0 pins depends on the function selected through the IOCONFIG register block. RESET -- External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. PIO0_0 -- General purpose digital input/output pin. PIO0_1 -- General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler. CLKOUT -- Clockout pin. CT32B0_MAT2 -- Match output 2 for 32-bit timer 0. PIO0_2 -- General purpose digital input/output pin. SSEL0 -- Slave Select for SPI0. CT16B0_CAP0 -- Capture input 0 for 16-bit timer 0. PIO0_3 -- General purpose digital input/output pin. PIO0_4 -- General purpose digital input/output pin (open-drain). SCL -- I2C-bus, open-drain clock input/output. High-current sink only if I2C Fast-mode Plus is selected in the I/O configuration register. PIO0_5 -- General purpose digital input/output pin (open-drain). SDA -- I2C-bus, open-drain data input/output. High-current sink only if I2C Fast-mode Plus is selected in the I/O configuration register. PIO0_6 -- General purpose digital input/output pin. SCK0 -- Serial clock for SPI0. PIO0_7 -- General purpose digital input/output pin (high-current output driver). CTS -- Clear To Send input for UART. PIO0_8 -- General purpose digital input/output pin. MISO0 -- Master In Slave Out for SPI0. CT16B0_MAT0 -- Match output 0 for 16-bit timer 0. PIO0_9 -- General purpose digital input/output pin. MOSI0 -- Master Out Slave In for SPI0. CT16B0_MAT1 -- Match output 1 for 16-bit timer 0. SWCLK -- Serial wire clock. PIO0_10 -- General purpose digital input/output pin. SCK0 -- Serial clock for SPI0. CT16B0_MAT2 -- Match output 2 for 16-bit timer 0. R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO0_11 -- General purpose digital input/output pin. AD0 -- A/D converter, input 0. CT32B0_MAT3 -- Match output 3 for 32-bit timer 0.
RESET/PIO0_0
3[1]
I
I/O PIO0_1/CLKOUT/ CT32B0_MAT2 4[2] I/O O O PIO0_2/SSEL0/ CT16B0_CAP0 10[2] I/O O I PIO0_3 PIO0_4/SCL 14[2] 15[3] I/O I/O I/O PIO0_5/SDA 16[3] I/O I/O PIO0_6/SCK0 PIO0_7/CTS 22[2] 23[2] I/O I/O I/O I PIO0_8/MISO0/ CT16B0_MAT0 27[2] I/O I/O O PIO0_9/MOSI0/ CT16B0_MAT1 28[2] I/O I/O O SWCLK/PIO0_10/ SCK0/CT16B0_MAT2 29[2] I I/O I/O O R/PIO0_11/ AD0/CT32B0_MAT3 32[4] I I/O I O
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
8 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 3. Symbol
LPC1113/14 pin description table (LQFP48 package) ...continued Pin Type I/O Description Port 1 -- Port 1 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 1 pins depends on the function selected through the IOCONFIG register block. R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_0 -- General purpose digital input/output pin. AD1 -- A/D converter, input 1. CT32B1_CAP0 -- Capture input 0 for 32-bit timer 1. R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_1 -- General purpose digital input/output pin. AD2 -- A/D converter, input 2. CT32B1_MAT0 -- Match output 0 for 32-bit timer 1. R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_2 -- General purpose digital input/output pin. AD3 -- A/D converter, input 3. CT32B1_MAT1 -- Match output 1 for 32-bit timer 1. SWDIO -- Serial wire debug input/output. PIO1_3 -- General purpose digital input/output pin. AD4 -- A/D converter, input 4. CT32B1_MAT2 -- Match output 2 for 32-bit timer 1. PIO1_4 -- General purpose digital input/output pin. AD5 -- A/D converter, input 5. CT32B1_MAT3 -- Match output 3 for 32-bit timer 1. WAKEUP -- Deep power-down mode wake-up pin. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode. PIO1_5 -- General purpose digital input/output pin. RTS -- Request To Send output for UART. CT32B0_CAP0 -- Capture input 0 for 32-bit timer 0. PIO1_6 -- General purpose digital input/output pin. RXD -- Receiver input for UART. CT32B0_MAT0 -- Match output 0 for 32-bit timer 0. PIO1_7 -- General purpose digital input/output pin. TXD -- Transmitter output for UART. CT32B0_MAT1 -- Match output 1 for 32-bit timer 0. PIO1_8 -- General purpose digital input/output pin. CT16B1_CAP0 -- Capture input 0 for 16-bit timer 1. PIO1_9 -- General purpose digital input/output pin. CT16B1_MAT0 -- Match output 0 for 16-bit timer 1. PIO1_10 -- General purpose digital input/output pin. AD6 -- A/D converter, input 6. CT16B1_MAT1 -- Match output 1 for 16-bit timer 1.
PIO1_0 to PIO1_11
R/PIO1_0/ AD1/CT32B1_CAP0
33[4]
I I/O I I
R/PIO1_1/ AD2/CT32B1_MAT0
34[4]
O I/O I O
R/PIO1_2/ AD3/CT32B1_MAT1
35[4]
I I/O I O
SWDIO/PIO1_3/AD4/ CT32B1_MAT2
39[4]
I/O I/O I O
PIO1_4/AD5/ CT32B1_MAT3/WAKEUP
40[4]
I/O I O I
PIO1_5/RTS/ CT32B0_CAP0
45[2]
I/O O I
PIO1_6/RXD/ CT32B0_MAT0
46[2]
I/O I O
PIO1_7/TXD/ CT32B0_MAT1
47[2]
I/O O O
PIO1_8/CT16B1_CAP0 PIO1_9/CT16B1_MAT0 PIO1_10/AD6/ CT16B1_MAT1
9[2] 17[2] 30[4]
I/O I I/O O I/O I O
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
9 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 3. Symbol
LPC1113/14 pin description table (LQFP48 package) ...continued Pin 42[4] Type I/O I I/O Description PIO1_11 -- General purpose digital input/output pin. AD7 -- A/D converter, input 7. Port 2 -- Port 2 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 2 pins depends on the function selected through the IOCONFIG register block. PIO2_0 -- General purpose digital input/output pin. DTR -- Data Terminal Ready output for UART. SSEL1 -- Slave Select for SPI1. PIO2_1 -- General purpose digital input/output pin. DSR -- Data Set Ready input for UART. SCK1 -- Serial clock for SPI1. PIO2_2 -- General purpose digital input/output pin. DCD -- Data Carrier Detect input for UART. MISO1 -- Master In Slave Out for SPI1. PIO2_3 -- General purpose digital input/output pin. RI -- Ring Indicator input for UART. MOSI1 -- Master Out Slave In for SPI1. PIO2_4 -- General purpose digital input/output pin. PIO2_5 -- General purpose digital input/output pin. PIO2_6 -- General purpose digital input/output pin. PIO2_7 -- General purpose digital input/output pin. PIO2_8 -- General purpose digital input/output pin. PIO2_9 -- General purpose digital input/output pin. PIO2_10 -- General purpose digital input/output pin. PIO2_11 -- General purpose digital input/output pin. SCK0 -- Serial clock for SPI0. Port 3 -- Port 3 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 3 pins depends on the function selected through the IOCONFIG register block. Pins PIO3_6 to PIO3_11 are not available. PIO3_0 -- General purpose digital input/output pin. DTR -- Data Terminal Ready output for UART. PIO3_1 -- General purpose digital input/output pin. DSR -- Data Set Ready input for UART. PIO3_2 -- General purpose digital input/output pin. DCD -- Data Carrier Detect input for UART. PIO3_3 -- General purpose digital input/output pin. RI -- Ring Indicator input for UART. PIO3_4 -- General purpose digital input/output pin. PIO3_5 -- General purpose digital input/output pin. 3.3 V supply voltage to the internal regulator, the external rail, and the ADC. Also used as the ADC reference voltage.
PIO1_11/AD7 PIO2_0 to PIO2_11
PIO2_0/DTR/SSEL1
2[2]
I/O O O
PIO2_1/DSR/SCK1
13[2]
I/O I I/O
PIO2_2/DCD/MISO1
26[2]
I/O I I/O
PIO2_3/RI/MOSI1
38[2]
I/O I I/O
PIO2_4 PIO2_5 PIO2_6 PIO2_7 PIO2_8 PIO2_9 PIO2_10 PIO2_11/SCK0 PIO3_0 to PIO3_5
19[2] 20[2] 1[2] 11[2] 12[2] 24[2] 25[2] 31[2]
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
PIO3_0/DTR PIO3_1/DSR PIO3_2/DCD PIO3_3/RI PIO3_4 PIO3_5 VDD
36[2] 37[2] 43[2] 48[2] 18[2] 21[2] 8; 44
I/O O I/O I I/O I I/O I I/O I/O I
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
10 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 3. Symbol XTALIN XTALOUT VSS
[1] [2] [3] [4] [5]
LPC1113/14 pin description table (LQFP48 package) ...continued Pin 6[5] 7[5] 5; 41 Type I O I Description Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V. Output from the oscillator amplifier. Ground.
See Figure 27 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 26). I2C-bus pads compliant with the I2C-bus specification for I2C standard mode and I2C Fast-mode Plus. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 26). When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.
Table 4. Symbol
LPC1114 pin description table (PLCC44 package) Pin Type I/O Description Port 0 -- Port 0 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 0 pins depends on the function selected through the IOCONFIG register block. RESET -- External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. PIO0_0 -- General purpose digital input/output pin. PIO0_1 -- General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler. CLKOUT -- Clockout pin. CT32B0_MAT2 -- Match output 2 for 32-bit timer 0. PIO0_2 -- General purpose digital input/output pin. SSEL0 -- Slave Select for SPI0. CT16B0_CAP0 -- Capture input 0 for 16-bit timer 0. PIO0_3 -- General purpose digital input/output pin. PIO0_4 -- General purpose digital input/output pin (open-drain). SCL -- I2C-bus, open-drain clock input/output. High-current sink only if I2C Fast-mode Plus is selected in the I/O configuration register. PIO0_5 -- General purpose digital input/output pin (open-drain). SDA -- I2C-bus, open-drain data input/output. High-current sink only if I2C Fast-mode Plus is selected in the I/O configuration register. PIO0_6 -- General purpose digital input/output pin. SCK0 -- Serial clock for SPI0. PIO0_7 -- General purpose digital input/output pin (high-current output driver). CTS -- Clear To Send input for UART. PIO0_8 -- General purpose digital input/output pin. MISO0 -- Master In Slave Out for SPI0. CT16B0_MAT0 -- Match output 0 for 16-bit timer 0.
All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
PIO0_0 to PIO0_11
RESET/PIO0_0
7[1]
I
I/O PIO0_1/CLKOUT/ CT32B0_MAT2 8[2] I/O O O PIO0_2/SSEL0/ CT16B0_CAP0 14[2] I/O O I PIO0_3 PIO0_4/SCL 18[2] 19[3] I/O I/O I/O PIO0_5/SDA 20[3] I/O I/O PIO0_6/SCK0 PIO0_7/CTS 26[2] 27[2] I/O I/O I/O I PIO0_8/MISO0/ CT16B0_MAT0 31[2] I/O I/O O
LPC1111_12_13_14_1
Product data sheet
Rev. 01 -- 16 April 2010
11 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 4. Symbol
LPC1114 pin description table (PLCC44 package) ...continued Pin 32[2] Type I/O I/O O 33[2] I I/O I/O O Description PIO0_9 -- General purpose digital input/output pin. MOSI0 -- Master Out Slave In for SPI0. CT16B0_MAT1 -- Match output 1 for 16-bit timer 0. SWCLK -- Serial wire clock. PIO0_10 -- General purpose digital input/output pin. SCK0 -- Serial clock for SPI0. CT16B0_MAT2 -- Match output 2 for 16-bit timer 0. R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO0_11 -- General purpose digital input/output pin. AD0 -- A/D converter, input 0. CT32B0_MAT3 -- Match output 3 for 32-bit timer 0. Port 1 -- Port 1 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 1 pins depends on the function selected through the IOCONFIG register block. R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_0 -- General purpose digital input/output pin. AD1 -- A/D converter, input 1. CT32B1_CAP0 -- Capture input 0 for 32-bit timer 1. R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_1 -- General purpose digital input/output pin. AD2 -- A/D converter, input 2. CT32B1_MAT0 -- Match output 0 for 32-bit timer 1. R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_2 -- General purpose digital input/output pin. AD3 -- A/D converter, input 3. CT32B1_MAT1 -- Match output 1 for 32-bit timer 1. SWDIO -- Serial wire debug input/output. PIO1_3 -- General purpose digital input/output pin. AD4 -- A/D converter, input 4. CT32B1_MAT2 -- Match output 2 for 32-bit timer 1. PIO1_4 -- General purpose digital input/output pin. AD5 -- A/D converter, input 5. CT32B1_MAT3 -- Match output 3 for 32-bit timer 1. WAKEUP -- Deep power-down mode wake-up pin. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode. PIO1_5 -- General purpose digital input/output pin. RTS -- Request To Send output for UART. CT32B0_CAP0 -- Capture input 0 for 32-bit timer 0. PIO1_6 -- General purpose digital input/output pin. RXD -- Receiver input for UART. CT32B0_MAT0 -- Match output 0 for 32-bit timer 0.
All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
PIO0_9/MOSI0/ CT16B0_MAT1
SWCLK/PIO0_10/ SCK0/CT16B0_MAT2
R/PIO0_11/ AD0/CT32B0_MAT3
36[4]
I I/O I O
PIO1_0 to PIO1_11
I/O
R/PIO1_0/ AD1/CT32B1_CAP0
37[4]
I I/O I I
R/PIO1_1/ AD2/CT32B1_MAT0
38[4]
O I/O I O
R/PIO1_2/ AD3/CT32B1_MAT1
39[4]
I I/O I O
SWDIO/PIO1_3/AD4/ CT32B1_MAT2
41[4]
I/O I/O I O
PIO1_4/AD5/ CT32B1_MAT3/WAKEUP
42[4]
I/O I O I
PIO1_5/RTS/ CT32B0_CAP0
2[2]
I/O O I
PIO1_6/RXD/ CT32B0_MAT0
3[2]
I/O I O
LPC1111_12_13_14_1
Product data sheet
Rev. 01 -- 16 April 2010
12 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 4. Symbol
LPC1114 pin description table (PLCC44 package) ...continued Pin 4[2] Type I/O O O 13[2] 21[2] 34[4] I/O I I/O O I/O I O 44[4] I/O I I/O Description PIO1_7 -- General purpose digital input/output pin. TXD -- Transmitter output for UART. CT32B0_MAT1 -- Match output 1 for 32-bit timer 0. PIO1_8 -- General purpose digital input/output pin. CT16B1_CAP0 -- Capture input 0 for 16-bit timer 1. PIO1_9 -- General purpose digital input/output pin. CT16B1_MAT0 -- Match output 0 for 16-bit timer 1. PIO1_10 -- General purpose digital input/output pin. AD6 -- A/D converter, input 6. CT16B1_MAT1 -- Match output 1 for 16-bit timer 1. PIO1_11 -- General purpose digital input/output pin. AD7 -- A/D converter, input 7. Port 2 -- Port 2 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 2 pins depends on the function selected through the IOCONFIG register block. PIO2_0 -- General purpose digital input/output pin. DTR -- Data Terminal Ready output for UART. SSEL1 -- Slave Select for SPI1. PIO2_1 -- General purpose digital input/output pin. DSR -- Data Set Ready input for UART. SCK1 -- Serial clock for SPI1. PIO2_2 -- General purpose digital input/output pin. DCD -- Data Carrier Detect input for UART. MISO1 -- Master In Slave Out for SPI1. PIO2_3 -- General purpose digital input/output pin. RI -- Ring Indicator input for UART. MOSI1 -- Master Out Slave In for SPI1. PIO2_4 -- General purpose digital input/output pin. PIO2_5 -- General purpose digital input/output pin. PIO2_6 -- General purpose digital input/output pin. PIO2_7 -- General purpose digital input/output pin. PIO2_8 -- General purpose digital input/output pin. PIO2_9 -- General purpose digital input/output pin. PIO2_10 -- General purpose digital input/output pin. PIO2_11 -- General purpose digital input/output pin. SCK0 -- Serial clock for SPI0. Port 3 -- Port 3 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 3 pins depends on the function selected through the IOCONFIG register block. Pins PIO3_0 to PIO3_3 and PIO3_6 to PIO3_11 are not available. PIO3_4 -- General purpose digital input/output pin. PIO3_5 -- General purpose digital input/output pin.
All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
PIO1_7/TXD/ CT32B0_MAT1
PIO1_8/CT16B1_CAP0 PIO1_9/CT16B1_MAT0 PIO1_10/AD6/ CT16B1_MAT1
PIO1_11/AD7 PIO2_0 to PIO2_11
PIO2_0/DTR/SSEL1
6[2]
I/O O O
PIO2_1/DSR/SCK1
17[2]
I/O I I/O
PIO2_2/DCD/MISO1
30[2]
I/O I I/O
PIO2_3/RI/MOSI1
40[2]
I/O I I/O
PIO2_4 PIO2_5 PIO2_6 PIO2_7 PIO2_8 PIO2_9 PIO2_10 PIO2_11/SCK0 PIO3_0 to PIO3_5
23[2] 24[2] 5[2] 15[2] 16[2] 28[2] 29[2] 35[2]
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
PIO3_4 PIO3_5
LPC1111_12_13_14_1
22[2] 25[2]
I/O I/O
Product data sheet
Rev. 01 -- 16 April 2010
13 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 4. Symbol VDD XTALIN XTALOUT VSS
[1] [2] [3] [4] [5]
LPC1114 pin description table (PLCC44 package) ...continued Pin 1; 12 10[5] 11[5] 9; 43 Type I I O I Description 3.3 V supply voltage to the internal regulator, the external rail, and the ADC. Also used as the ADC reference voltage. Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V. Output from the oscillator amplifier. Ground.
See Figure 27 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 26). I2C-bus pads compliant with the I2C-bus specification for I2C standard mode and I2C Fast-mode Plus. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 26). When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
14 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 5. Symbol
LPC1111/12/13/14 pin description table (HVQFN33 package) Pin Type I/O Description Port 0 -- Port 0 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 0 pins depends on the function selected through the IOCONFIG register block. RESET -- External reset input: A LOW on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. PIO0_0 -- General purpose digital input/output pin. PIO0_1 -- General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler. CLKOUT -- Clock out pin. CT32B0_MAT2 -- Match output 2 for 32-bit timer 0. PIO0_2 -- General purpose digital input/output pin. SSEL0 -- Slave select for SPI0. CT16B0_CAP0 -- Capture input 0 for 16-bit timer 0. PIO0_3 -- General purpose digital input/output pin. PIO0_4 -- General purpose digital input/output pin (open-drain). SCL -- I2C-bus, open-drain clock input/output. High-current sink only if I2C Fast-mode Plus is selected in the I/O configuration register. PIO0_5 -- General purpose digital input/output pin (open-drain). SDA -- I2C-bus, open-drain data input/output. High-current sink only if I2C Fast-mode Plus is selected in the I/O configuration register. PIO0_6 -- General purpose digital input/output pin. SCK0 -- Serial clock for SPI0. PIO0_7 -- General purpose digital input/output pin (high-current output driver). CTS -- Clear To Send input for UART. PIO0_8 -- General purpose digital input/output pin. MISO0 -- Master In Slave Out for SPI0. CT16B0_MAT0 -- Match output 0 for 16-bit timer 0. PIO0_9 -- General purpose digital input/output pin. MOSI0 -- Master Out Slave In for SPI0. CT16B0_MAT1 -- Match output 1 for 16-bit timer 0. SWCLK -- Serial wire clock. PIO0_10 -- General purpose digital input/output pin. SCK0 -- Serial clock for SPI0. CT16B0_MAT2 -- Match output 2 for 16-bit timer 0. R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO0_11 -- General purpose digital input/output pin. AD0 -- A/D converter, input 0. CT32B0_MAT3 -- Match output 3 for 32-bit timer 0. Port 1 -- Port 1 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 1 pins depends on the function selected through the IOCONFIG register block.
All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
PIO0_0 to PIO0_11
RESET/PIO0_0
2[1]
I
I/O PIO0_1/CLKOUT/ CT32B0_MAT2 3[2] I/O O O PIO0_2/SSEL0/ CT16B0_CAP0 8[2] I/O O I PIO0_3 PIO0_4/SCL 9[2] 10[3] I/O I/O I/O PIO0_5/SDA 11[3] I/O I/O PIO0_6/SCK0 PIO0_7/CTS 15[2] 16[2] I/O I/O I/O I PIO0_8/MISO0/ CT16B0_MAT0 17[2] I/O I/O O PIO0_9/MOSI0/ CT16B0_MAT1 18[2] I/O I/O O SWCLK/PIO0_10/SCK0/ CT16B0_MAT2 19[2] I I/O I/O O R/PIO0_11/AD0/ CT32B0_MAT3 21[4] I I/O I O PIO1_0 to PIO1_11 I/O
LPC1111_12_13_14_1
Product data sheet
Rev. 01 -- 16 April 2010
15 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 5. Symbol
LPC1111/12/13/14 pin description table (HVQFN33 package) ...continued Pin 22[4] Type I I/O I I Description R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_0 -- General purpose digital input/output pin. AD1 -- A/D converter, input 1. CT32B1_CAP0 -- Capture input 0 for 32-bit timer 1. R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_1 -- General purpose digital input/output pin. AD2 -- A/D converter, input 2. CT32B1_MAT0 -- Match output 0 for 32-bit timer 1. R -- Reserved. Configure for an alternate function in the IOCONFIG block. PIO1_2 -- General purpose digital input/output pin. AD3 -- A/D converter, input 3. CT32B1_MAT1 -- Match output 1 for 32-bit timer 1. SWDIO -- Serial wire debug input/output. PIO1_3 -- General purpose digital input/output pin. AD4 -- A/D converter, input 4. CT32B1_MAT2 -- Match output 2 for 32-bit timer 1. PIO1_4 -- General purpose digital input/output pin. AD5 -- A/D converter, input 5. CT32B1_MAT3 -- Match output 3 for 32-bit timer 1. WAKEUP -- Deep power-down mode wake-up pin. This pin must be pulled HIGH externally to enter Deep power-down mode and pulled LOW to exit Deep power-down mode. PIO1_5 -- General purpose digital input/output pin. RTS -- Request To Send output for UART. CT32B0_CAP0 -- Capture input 0 for 32-bit timer 0. PIO1_6 -- General purpose digital input/output pin. RXD -- Receiver input for UART. CT32B0_MAT0 -- Match output 0 for 32-bit timer 0. PIO1_7 -- General purpose digital input/output pin. TXD -- Transmitter output for UART. CT32B0_MAT1 -- Match output 1 for 32-bit timer 0. PIO1_8 -- General purpose digital input/output pin. CT16B1_CAP0 -- Capture input 0 for 16-bit timer 1. PIO1_9 -- General purpose digital input/output pin. CT16B1_MAT0 -- Match output 0 for 16-bit timer 1. PIO1_10 -- General purpose digital input/output pin. AD6 -- A/D converter, input 6. CT16B1_MAT1 -- Match output 1 for 16-bit timer 1. PIO1_11 -- General purpose digital input/output pin. AD7 -- A/D converter, input 7.
R/PIO1_0/AD1/ CT32B1_CAP0
R/PIO1_1/AD2/ CT32B1_MAT0
23[4]
O I/O I O
R/PIO1_2/AD3/ CT32B1_MAT1
24[4]
I I/O I O
SWDIO/PIO1_3/AD4/ CT32B1_MAT2
25[4]
I/O I/O I O
PIO1_4/AD5/ CT32B1_MAT3/WAKEUP
26[4]
I/O I O I
PIO1_5/RTS/ CT32B0_CAP0
30[2]
I/O O I
PIO1_6/RXD/ CT32B0_MAT0
31[2]
I/O I O
PIO1_7/TXD/ CT32B0_MAT1
32[2]
I/O O O
PIO1_8/CT16B1_CAP0 PIO1_9/CT16B1_MAT0 PIO1_10/AD6/ CT16B1_MAT1
7[2] 12[2] 20[4]
I/O I I/O O I/O I O
PIO1_11/AD7
27[4]
I/O I
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
16 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 5. Symbol PIO2_0
LPC1111/12/13/14 pin description table (HVQFN33 package) ...continued Pin Type I/O Description Port 2 -- Port 2 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 2 pins depends on the function selected through the IOCONFIG register block. Pins PIO2_1 to PIO2_11 are not available. PIO2_0 -- General purpose digital input/output pin. DTR -- Data Terminal Ready output for UART. Port 3 -- Port 3 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 3 pins depends on the function selected through the IOCONFIG register block. Pins PIO3_0, PIO3_1, PIO3_3 and PIO3_6 to PIO3_11 are not available. PIO3_2 -- General purpose digital input/output pin. PIO3_4 -- General purpose digital input/output pin. PIO3_5 -- General purpose digital input/output pin. 3.3 V supply voltage to the internal regulator, the external rail, and the ADC. Also used as the ADC reference voltage. Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V. Output from the oscillator amplifier. Thermal pad. Connect to ground.
PIO2_0/DTR PIO3_0 to PIO3_5
1[2]
I/O O I/O
PIO3_2 PIO3_4 PIO3_5 VDD XTALIN XTALOUT VSS
[1] [2] [3] [4] [5]
28[2] 13[2] 14[2] 6; 29 4[5] 5[5] 33
I/O I/O I/O I I O -
See Figure 27 for the reset pad configuration. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 26). I2C-bus pads compliant with the I2C-bus specification for I2C standard mode and I2C Fast-mode Plus. 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled, and the pin is not 5 V tolerant (see Figure 26). When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
17 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
7. Functional description
7.1 ARM Cortex-M0 processor
The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high performance and very low power consumption.
7.2 On-chip flash program memory
The LPC1111/12/13/14 contain 32 kB (LPC1114), 24 kB (LPC1113), 16 kB (LPC1112), or 8 kB (LPC1111) of on-chip flash memory.
7.3 On-chip SRAM
The LPC1111/12/13/14 contain a total of 8 kB, 4 kB, or 2 kB on-chip static RAM memory.
7.4 Memory map
The LPC1111/12/13/14 incorporates several distinct memory regions, shown in the following figures. Figure 5 shows the overall map of the entire address space from the user program viewpoint following reset. The interrupt vector area supports address remapping. The AHB peripheral area is 2 megabyte in size, and is divided to allow for up to 128 peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals. Each peripheral of either type is allocated 16 kilobytes of space. This allows simplifying the address decoding for each peripheral.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
18 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
4 GB
LPC1111/12/13/14
0xFFFF FFFF
AHB peripherals
0x5020 0000
127 - 4 reserved reserved 0x5004 0000 3 0x5020 0000 AHB peripherals 0x5000 0000 2 1 0 reserved GPIO PIO3 GPIO PIO2 GPIO PIO1 GPIO PIO0 APB peripherals 31 - 23 reserved 0x4008 0000 1 GB APB peripherals 0x4000 0000 22 0x4005 C000 SPI1(1) 21 - 19 reserved 0x4004 C000 18 reserved 17 16 15 0.5 GB reserved 0x1FFF 4000 16 kB boot ROM reserved 0x1000 2000 8 kB SRAM (LPC1113/14/301) 4 kB SRAM (LPC1111/12/13/14/201) 2 kB SRAM (LPC1111/12/101) reserved 0x0000 8000 32 kB on-chip flash (LPC1114) 24 kB on-chip flash (LPC1113) 16 kB on-chip flash (LPC1112) 0 GB 8 kB on-chip flash (LPC1111) 0x0000 6000 0x0000 4000 0x0000 2000 0x0000 0000
002aae699
0x5003 0000 0x5002 0000 0x5001 0000 0x5000 0000 0x4008 0000
0x4005 8000
system control IOCONFIG SPI0 flash controller PMU 13- 10 reserved
0x4004 8000 0x4004 4000 0x4004 0000 0x4003 C000 0x4003 8000
0x2000 0000
14
0x4002 8000 9 8 7 6 5 4 3 2 1 0 + 512 byte active interrupt vectors reserved reserved ADC 32-bit counter/timer 1 32-bit counter/timer 0 16-bit counter/timer 1 16-bit counter/timer 0 UART WDT I2C-bus 0x0000 0200 0x0000 0000 0x4002 4000 0x4002 0000 0x4001 C000 0x4001 8000 0x4001 4000 0x4001 0000 0x4000 C000 0x4000 8000 0x4000 4000 0x4000 0000
0x1FFF 0000
0x1000 1000 0x1000 0800 0x1000 0000
(1) LQFP48/PLCC44 packages only.
Fig 5.
LPC1111/12/13/14 memory map
7.5 Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The tight coupling to the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.
7.5.1 Features
* Controls system exceptions and peripheral interrupts.
LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
19 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
* In the LPC1111/12/13/14, the NVIC supports 32 vectored interrupts including up to 13
inputs to the start logic from individual GPIO pins.
* Four programmable interrupt priority levels, with hardware priority level masking. * Relocatable vector table. * Software interrupt generation.
7.5.2 Interrupt sources
Each peripheral device has one interrupt line connected to the NVIC but may have several interrupt flags. Individual interrupt flags may also represent more than one interrupt source. Any GPIO pin (total of up to 42 pins) regardless of the selected function, can be programmed to generate an interrupt on a level, or rising edge or falling edge, or both.
7.6 IOCONFIG block
The IOCONFIG block allows selected pins of the microcontroller to have more than one function. Configuration registers control the multiplexers to allow connection between the pin and the on-chip peripherals. Peripherals should be connected to the appropriate pins prior to being activated and prior to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is not mapped to a related pin should be considered undefined.
7.7 Fast general purpose parallel I/O
Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs can be set or cleared in one write operation. LPC1111/12/13/14 use accelerated GPIO functions:
* GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing
can be achieved.
* Entire port value can be written in one instruction.
Additionally, any GPIO pin (total of up to 42 pins) providing a digital function can be programmed to generate an interrupt on a level, a rising or falling edge, or both.
7.7.1 Features
* Bit level port registers allow a single instruction to set or clear any number of bits in
one write operation.
* Direction control of individual bits. * All I/O default to inputs with pull-ups enabled after reset. * Pull-up/pull-down resistor configuration can be programmed through the IOCONFIG
block for each GPIO pin.
7.8 UART
The LPC1111/12/13/14 contains one UART.
LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
20 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Support for RS-485/9-bit mode allows both software address detection and automatic address detection using 9-bit mode. The UART includes a fractional baud rate generator. Standard baud rates such as 115200 Bd can be achieved with any crystal frequency above 2 MHz.
7.8.1 Features
* * * * *
Maximum UART data bit rate of 3.125 MBit/s. 16 Byte Receive and Transmit FIFOs. Register locations conform to 16C550 industry standard. Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B. Built-in fractional baud rate generator covering wide range of baud rates without a need for external crystals of particular values.
* FIFO control mechanism that enables software flow control implementation. * Support for RS-485/9-bit mode. * Support for modem control. 7.9 SPI serial I/O controller
The LPC1111/12/13/14 contain two SPI controllers on the LQFP48/PLCC44 packages and one SPI controller on the HVQFN33 packages (SPI0). Both SPI controllers support SSP features. The SPI controller is capable of operation on a SSP, 4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the bus. Only a single master and a single slave can communicate on the bus during a given data transfer. The SPI supports full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice, often only one of these data flows carries meaningful data.
7.9.1 Features
* Maximum SPI speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode) * Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National
Semiconductor Microwire buses
* * * *
Synchronous serial communication Master or slave operation 8-frame FIFOs for both transmit and receive 4-bit to 16-bit frame
7.10 I2C-bus serial I/O controller
The LPC1111/12/13/14 contain one I2C-bus controller. The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line (SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or
LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
21 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be controlled by more than one bus master connected to it.
7.10.1 Features
* The I2C-interface is a standard I2C-bus compliant interface with open-drain pins. The
I2C-bus interface also supports Fast-mode Plus with bit rates up to 1 Mbit/s.
* * * * *
Easy to configure as master, slave, or master/slave. Programmable clocks allow versatile rate control. Bidirectional data transfer between masters and slaves. Multi-master bus (no central master). Arbitration between simultaneously transmitting masters without corruption of serial data on the bus. one serial bus.
* Serial clock synchronization allows devices with different bit rates to communicate via * Serial clock synchronization can be used as a handshake mechanism to suspend and
resume serial transfer.
* The I2C-bus can be used for test and diagnostic purposes. * The I2C-bus controller supports multiple address recognition and a bus monitor mode. 7.11 10-bit ADC
The LPC1111/12/13/14 contains one ADC. It is a single 10-bit successive approximation ADC with eight channels.
7.11.1 Features
* * * * * * * *
10-bit successive approximation ADC. Input multiplexing among 8 pins. Power-down mode. Measurement range 0 V to VDD. 10-bit conversion time 2.44 s. Burst conversion mode for single or multiple inputs. Optional conversion on transition of input pin or timer match signal. Individual result registers for each ADC channel to reduce interrupt overhead.
7.12 General purpose external event counter/timers
The LPC1111/12/13/14 includes two 32-bit counter/timers and two 16-bit counter/timers. The counter/timer is designed to count cycles of the system derived clock. It can optionally generate interrupts or perform other actions at specified timer values, based on four match registers. Each counter/timer also includes one capture input to trap the timer value when an input signal transitions, optionally generating an interrupt.
7.12.1 Features
* A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.
LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
22 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
* Counter or timer operation. * One capture channel per timer, that can take a snapshot of the timer value when an
input signal transitions. A capture event may also generate an interrupt.
* Four match registers per timer that allow:
- Continuous operation with optional interrupt generation on match. - Stop timer on match with optional interrupt generation. - Reset timer on match with optional interrupt generation.
* Up to four external outputs corresponding to match registers, with the following
capabilities: - Set LOW on match. - Set HIGH on match. - Toggle on match. - Do nothing on match.
7.13 System tick timer
The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).
7.14 Watchdog timer
The purpose of the watchdog is to reset the microcontroller within a selectable time period.
7.14.1 Features
* Internally resets chip if not periodically reloaded. * Debug mode. * Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be
disabled.
* * * *
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled. Flag to indicate watchdog reset. Programmable 32-bit timer with internal prescaler. Selectable time period from (Tcy(WDCLK) x 256 x 4) to (Tcy(WDCLK) x 232 x 4) in multiples of Tcy(WDCLK) x 4. (IRC), the Watchdog oscillator, or the main clock. This gives a wide range of potential timing choices of Watchdog operation under different power reduction conditions. It also provides the ability to run the WDT from an entirely internal source that is not dependent on an external crystal and its associated components and wiring for increased reliability.
* The Watchdog Clock (WDCLK) source can be selected from the Internal RC oscillator
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
23 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
7.15 Clocking and power control
7.15.1 Crystal oscillators
The LPC1111/12/13/14 include three independent oscillators. These are the system oscillator, the Internal RC oscillator (IRC), and the Watchdog oscillator. Each oscillator can be used for more than one purpose as required in a particular application. Following reset, the LPC1111/12/13/14 will operate from the Internal RC oscillator until switched by software. This allows systems to operate without any external crystal and the bootloader code to operate at a known frequency. See Figure 6 for an overview of the LPC1111/12/13/14 clock generation.
SYSTEM CLOCK DIVIDER
system clock
AHB clock 0 (system)
18
AHB clocks 1 to 18 (memories and peripherals)
AHBCLKCTRL[1:18] (AHB clock enable)
IRC oscillator
SPI0 PERIPHERAL CLOCK DIVIDER main clock UART PERIPHERAL CLOCK DIVIDER SPI1 PERIPHERAL CLOCK DIVIDER
SPI0
watchdog oscillator
UART
SPI1
MAINCLKSEL (main clock select) IRC oscillator SYSTEM PLL system oscillator IRC oscillator
SYSPLLCLKSEL (system PLL clock select)
WDT CLOCK DIVIDER watchdog oscillator WDTUEN (WDT clock update enable) IRC oscillator system oscillator watchdog oscillator
WDT
CLKOUT PIN CLOCK DIVIDER
CLKOUT pin
CLKOUTUEN (CLKOUT update enable)
002aae514
Fig 6.
LPC1111/12/13/14 clock generation block diagram
7.15.1.1
Internal RC oscillator The IRC may be used as the clock source for the WDT, and/or as the clock that drives the PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is trimmed to 1 % accuracy over the entire voltage and temperature range.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
24 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Upon power-up or any chip reset, the LPC1111/12/13/14 use the IRC as the clock source. Software may later switch to one of the other available clock sources. 7.15.1.2 System oscillator The system oscillator can be used as the clock source for the CPU, with or without using the PLL. The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be boosted to a higher frequency, up to the maximum CPU operating frequency, by the system PLL. 7.15.1.3 Watchdog oscillator The watchdog oscillator can be used as a clock source that directly drives the CPU, the watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is programmable between 7.8 kHz and 1.7 MHz. The frequency spread over processing and temperature is 40 %.
7.15.2 System PLL
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32. The CCO operates in the range of 156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within its frequency range while the PLL is providing the desired output frequency. The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed following a chip reset and may be enabled by software. The program must configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source. The PLL settling time is 100 s.
7.15.3 Clock output
The LPC1111/12/13/14 features a clock output function that routes the IRC oscillator, the system oscillator, the watchdog oscillator, or the main clock to an output pin.
7.15.4 Wake-up process
The LPC1111/12/13/14 begin operation at power-up and when awakened from Deep power-down mode by using the 12 MHz IRC oscillator as the clock source. This allows chip operation to resume quickly. If the system oscillator or the PLL is needed by the application, software will need to enable these features and wait for them to stabilize before they are used as a clock source.
7.15.5 Power control
The LPC1111/12/13/14 support a variety of power control features. There are three special modes of processor power reduction: Sleep mode, Deep-sleep mode, and Deep power-down mode. The CPU clock rate may also be controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a trade-off of power versus processing speed based on application requirements. In addition, a register is provided for shutting down the clocks to individual on-chip peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any peripherals that are not required for the application. Selected peripherals have their own clock divider which provides even better power control.
LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
25 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
7.15.5.1
Sleep mode When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep mode does not need any special sequence but re-enabling the clock to the ARM core. In Sleep mode, execution of instructions is suspended until either a reset or interrupt occurs. Peripheral functions continue operation during Sleep mode and may generate interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and related controllers, and internal buses.
7.15.5.2
Deep-sleep mode In Deep-sleep mode, the chip is in Sleep mode, and in addition analog blocks can be shut down for increased power savings. The user can configure the Deep-sleep mode to a large extent, selecting any of the oscillators, the PLL, BOD, the ADC, and the flash to be shut down or remain powered during Deep-sleep mode. The user can also select which of the oscillators and analog blocks will be powered up after the chip exits from Deep-sleep mode. The GPIO pins (up to 15 pins total) serve as external wake-up pins to a dedicated start logic to wake up the chip from Deep-sleep mode. The timing of the wake-up process from Deep-sleep mode depends on which blocks are selected to be powered down during deep-sleep. For lowest power consumption, the clock source should be switched to IRC before entering Deep-sleep mode, all oscillators and the PLL should be turned off during deep-sleep, and the IRC should be selected as clock source when the chip wakes up from deep-sleep. The IRC can be switched on and off glitch-free and provides a clean clock signal after start-up. If power consumption is not a concern, any of the oscillators and/or the PLL can be left running in Deep-sleep mode to obtain short wake-up times when waking up from deep-sleep.
7.15.5.3
Deep power-down mode In Deep power-down mode, power is shut off to the entire chip with the exception of the WAKEUP pin. The LPC1111/12/13/14 can wake up from Deep power-down mode via the WAKEUP pin.
7.16 System control
7.16.1 Reset
Reset has four sources on the LPC1111/12/13/14: the RESET pin, the Watchdog reset, power-on reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt trigger input pin. Assertion of chip reset by any source, once the operating voltage attains a usable level, starts the IRC and initializes the flash controller. When the internal Reset is removed, the processor begins executing at address 0, which is initially the Reset vector mapped from the boot block. At that point, all of the processor and peripheral registers have been initialized to predetermined values.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
26 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
7.16.2 Brownout detection
The LPC1111/12/13/14 includes four levels for monitoring the voltage on the VDD pin. If this voltage falls below one of the four selected levels, the BOD asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading a dedicated status register. Four additional threshold levels can be selected to cause a forced reset of the chip.
7.16.3 Code security (Code Read Protection - CRP)
This feature of the LPC1111/12/13/14 allows user to enable different levels of security in the system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be restricted. When needed, CRP is invoked by programming a specific pattern into a dedicated flash location. IAP commands are not affected by the CRP. In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For details see the LPC111x user manual. There are three levels of Code Read Protection: 1. CRP1 disables access to the chip via the SWD and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased. 2. CRP2 disables access to the chip via the SWD and only allows full flash erase and update using a reduced set of the ISP commands. 3. Running an application with level CRP3 selected fully disables any access to the chip via the SWD pins and the ISP. This mode effectively disables ISP override using PIO0_1 pin, too. It is up to the user's application to provide (if needed) flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via the UART.
CAUTION If level three Code Read Protection (CRP3) is selected, no future factory testing can be performed on the device.
In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be disabled. For details see the LPC111x user manual.
7.16.4 APB interface
The APB peripherals are located on one APB bus.
7.16.5 AHBLite
The AHBLite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main static RAM, and the Boot ROM.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
27 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
7.16.6 External interrupt inputs
All GPIO pins can be level or edge sensitive interrupt inputs.
7.16.7 Memory mapping control
The Cortex-M0 incorporates a mechanism that allows remapping the interrupt vector table to alternate locations in the memory map. This is controlled via the Vector Table Offset Register contained in the NVIC. The vector table may be located anywhere within the bottom 1 GB of Cortex-M0 address space. The vector table must be located on a 128 word (512 byte) boundary.
7.17 Emulation and debugging
Debug functions are integrated into the ARM Cortex-M0. Serial wire debug with four breakpoints and two watchpoints is supported.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
28 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
8. Limiting values
Table 6. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134).[1] Symbol VDD VI Parameter supply voltage (core and external rail) input voltage 5 V tolerant I/O pins; only valid when the VDD supply voltage is present per supply pin per ground pin -(0.5VDD) < VI < (1.5VDD); Tj < 125 C Tstg Tj(max) Ptot(pack) storage temperature maximum junction temperature total power dissipation (per package) based on package heat transfer, not device power consumption human body model; all pins
[5] [4] [2]
Conditions
Min 1.8 -0.5
Max 3.6 +5.5
Unit V V
IDD ISS Ilatch
supply current ground current I/O latch-up current
[3] [3]
-
100 100 100
mA mA mA
-65 -
+150 150 1.5
C C W
VESD
electrostatic discharge voltage
-5000
+5000
V
[1]
The following applies to the limiting values: a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum. b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted.
[2] [3] [4] [5]
Including voltage on outputs in 3-state mode. The peak current is limited to 25 times the corresponding maximum current. Dependent on package type. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
29 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
9. Static characteristics
Table 7. Static characteristics Tamb = -40 C to +85 C, unless otherwise specified. Symbol VDD IDD Parameter supply voltage (core and external rail) supply current Active mode; code Conditions Min 1.8 Typ[1] 3.3 Max 3.6 Unit V
while(1){}
executed from flash system clock = 12 MHz VDD = 3.3 V system clock = 50 MHz VDD = 3.3 V Sleep mode; system clock = 12 MHz VDD = 3.3 V Deep-sleep mode; VDD = 3.3 V Deep power-down mode; VDD = 3.3 V Standard port pins, RESET IIL IIH LOW-level input current VI = 0 V; on-chip pull-up resistor disabled HIGH-level input current OFF-state output current input voltage output voltage HIGH-level input voltage LOW-level input voltage hysteresis voltage HIGH-level output voltage 2.0 V VDD 3.6 V; IOH = -4 mA 1.8 V VDD < 2.0 V; IOH = -3 mA VOL LOW-level output voltage 2.0 V VDD 3.6 V; IOL = 4 mA 1.8 V VDD < 2.0 V; IOL = 3 mA
[13] [2][3][8] [2][3][4] [5][6] [2][3][5] [6][7] [2][3][4] [5][6]
-
3 9 2
-
mA mA mA
-
6 220
-
A nA
[2][9]
-
0.5 0.5
10 10
nA nA
VI = VDD; on-chip pull-down resistor disabled VO = 0 V; VO = VDD; on-chip pull-up/down resistors disabled pin configured to provide a digital function output active
[10][11] [12]
IOZ
-
0.5
10
nA
VI VO VIH VIL Vhys VOH
0 0 0.7VDD VDD - 0.4 VDD - 0.4 -
0.4 -
5.0 VDD 0.3VDD 0.4 0.4
V V V V V V V V V
[13]
[13]
[13]
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
30 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 7. Static characteristics ...continued Tamb = -40 C to +85 C, unless otherwise specified. Symbol IOH Parameter HIGH-level output current Conditions VOH = VDD - 0.4 V; 2.0 V VDD 3.6 V 1.8 V VDD < 2.0 V IOL LOW-level output current VOL = 0.4 V 2.0 V VDD 3.6 V 1.8 V VDD < 2.0 V IOHS IOLS Ipd Ipu HIGH-level short-circuit VOH = 0 V output current LOW-level short-circuit output current pull-down current pull-up current VOL = VDD VI = 5 V VI = 0 V; 2.0 V VDD 3.6 V 1.8 V VDD < 2.0 V VDD < VI < 5 V High-drive output pin (PIO0_7) IIL IIH LOW-level input current VI = 0 V; on-chip pull-up resistor disabled HIGH-level input current OFF-state output current input voltage output voltage HIGH-level input voltage LOW-level input voltage hysteresis voltage HIGH-level output voltage 2.0 V VDD 3.6 V; IOH = -4 mA 1.8 V VDD < 2.0 V; IOH = -3 mA VOL LOW-level output voltage 2.0 V VDD 3.6 V; IOL = 4 mA 1.8 V VDD < 2.0 V; IOL = 3 mA IOH IOL HIGH-level output current LOW-level output current VOH = VDD - 0.4 V; VDD 2.5 V VOL = 0.4 V 2.0 V VDD 3.6 V 1.8 V VDD < 2.0 V
LPC1111_12_13_14_1
Min
[13]
Typ[1] 50 -50 -50 0 0.5 0.5
Max -45 50 150 -85 -85 0 10 10
Unit mA mA mA mA mA mA A A A A nA nA
-4 -3 4 3 10 -15 -10 0 -
[13] [13]
[13] [14]
[14]
VI = VDD; on-chip pull-down resistor disabled VO = 0 V; VO = VDD; on-chip pull-up/down resistors disabled pin configured to provide a digital function output active
[10][11] [12]
IOZ
-
0.5
10
nA
VI VO VIH VIL Vhys VOH
0 0 0.7VDD 0.4
-
5.0 VDD 0.3VDD 0.4 0.4 -
V V V V V V V V V mA mA mA
[13]
VDD - 0.4 VDD - 0.4 20 4 3
[13]
[13]
[13]
[13]
[13]
[13]
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
31 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 7. Static characteristics ...continued Tamb = -40 C to +85 C, unless otherwise specified. Symbol IOHS IOLS Ipd Ipu Parameter Conditions
[14]
Min 10 -15 -10 0 0.7VDD -
Typ[1] 50 -50 -50 0 0.5VDD -
Max -45 50 150 -85 -85 0 0.3VDD -
Unit mA mA A A A A V V V mA
HIGH-level short-circuit VOH = 0 V output current LOW-level short-circuit output current pull-down current pull-up current VOL = VDD VI = 5 V VI = 0 V 2.0 V VDD 3.6 V 1.8 V VDD < 2.0 V VDD < VI < 5 V
[14]
I2C-bus VIH VIL Vhys IOL
pins (PIO0_4 and PIO0_5) HIGH-level input voltage LOW-level input voltage hysteresis voltage LOW-level output current VOL = 0.4 V; I2C-bus pins configured as standard mode pins 2.0 V VDD 3.6 V 1.8 V VDD < 2.0 V
[13] [13] [13]
4
3 20
-
mA
IOL
LOW-level output current
VOL = 0.4 V; pins configured as Fast-mode Plus pins 2.0 V VDD 3.6 V 1.8 V VDD < 2.0 V
I2C-bus
[13] [15]
16 -0.5 -0.5
2 10 1.8 1.8
4 22 1.95 1.95 A A V V
ILI Oscillator pins Vi(xtal) Vo(xtal)
[1] [2] [3] [4] [5] [6] [7] [8] [9]
input leakage current
VI = VDD VI = 5 V
crystal input voltage crystal output voltage
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages. Tamb = 25 C. IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled. IRC enabled; system oscillator disabled; system PLL disabled. BOD disabled. All peripherals disabled in the AHBCLKCTRL register. Peripheral clocks to UART and SPI0/1 disabled in system configuration block. IRC disabled; system oscillator enabled; system PLL enabled. All oscillators and analog blocks turned off in the PDSLEEPCFG register; PDSLEEPCFG = 0xFFFF FDFF. WAKEUP pin pulled HIGH externally.
[10] Including voltage on outputs in 3-state mode. [11] VDD supply voltage must be present. [12] 3-state outputs go into 3-state mode in Deep power-down mode. [13] Accounts for 100 mV voltage drop in all supply lines. [14] Allowed as long as the current limit does not exceed the maximum current allowed by the device.
LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
32 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
[15] To VSS.
Table 8. ADC static characteristics Tamb = -40 C to +85 C unless otherwise specified; ADC frequency 4.5 MHz, VDD = 2.5 V to 3.6 V. Symbol VIA Cia ED EL(adj) EO EG ET Rvsi Ri
[1] [2] [3] [4] [5] [6] [7] [8]
Parameter analog input voltage analog input capacitance differential linearity error integral non-linearity offset error gain error absolute error voltage source interface resistance input resistance
Conditions
Min 0 [1][2] [3] [4] [5] [6]
Typ -
Max VDD 1 1 1.5 3.5 0.6 4 40 2.5
Unit V pF LSB LSB LSB % LSB k M
-
[7][8]
-
The ADC is monotonic, there are no missing codes. The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 7. The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 7. The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 7. The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See Figure 7. The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See Figure 7. Tamb = 25 C; maximum sampling frequency fs = 4.5 MHz and analog input capacitance Cia = 1 pF. Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs x Cia).
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
33 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
offset error EO 1023
gain error EG
1022
1021
1020
1019
1018
(2)
7 code out 6
(1)
5
(5)
4
(4)
3
(3)
2
1
1 LSB (ideal) 1018 1019 1020 1021 1022 1023 1024
0 1 offset error EO 2 3 4 5 6 7 VIA (LSBideal)
1 LSB =
VDD - VSS 1024
002aaf426
(1) Example of an actual transfer curve. (2) The ideal transfer curve. (3) Differential linearity error (ED). (4) Integral non-linearity (EL(adj)). (5) Center of a step of the actual transfer curve.
Fig 7.
ADC characteristics
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
34 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
9.1 BOD static characteristics
Table 9. BOD static characteristics[1] Tamb = 25 C. Symbol Vth Parameter threshold voltage Conditions interrupt level 0 assertion de-assertion interrupt level 1 assertion de-assertion interrupt level 2 assertion de-assertion interrupt level 3 assertion de-assertion reset level 0 assertion de-assertion reset level 1 assertion de-assertion reset level 2 assertion de-assertion reset level 3 assertion de-assertion
[1]
Min -
Typ 1.65 1.80 2.22 2.35 2.52 2.66 2.80 2.90 1.46 1.63 2.06 2.15 2.35 2.43 2.63 2.71
Max -
Unit V V V V V V V V V V V V V V V V
Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC111x user manual.
9.2 Power consumption
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the following conditions (see LPC111x user manual):
* Configure all pins as GPIO with pull-up resistor disabled in the IOCONFIG block. * Configure GPIO pins as outputs using the GPIOnDIR registers. * Write 0 to all GPIOnDATA registers to drive the outputs LOW.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
35 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
12 IDD (mA) 8
002aaf390
48 MHz(2) 36 MHz(2) 24 MHz(2) 4 12 MHz(1)
0 1.8
2.4
3.0 VDD (V)
3.6
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all peripherals disabled in the AHBCLKCTRL register (AHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal pull-up resistors disabled; BOD disabled. (1) System oscillator and system PLL disabled; IRC enabled. (2) System oscillator and system PLL enabled; IRC disabled.
Fig 8.
Active mode: Typical supply current IDD versus supply voltage VDD for different system clock frequencies
12 IDD (mA) 8
002aaf391
48 MHz(2)
36 MHz(2) 24 MHz(2)
4
12 MHz(1)
0 -40
-15
10
35
60 85 temperature (C)
Conditions: VDD = 3.3 V; active mode entered executing code while(1){} from flash; all peripherals disabled in the AHBCLKCTRL register (AHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal pull-up resistors disabled; BOD disabled. (1) System oscillator and system PLL disabled; IRC enabled. (2) System oscillator and system PLL enabled; IRC disabled.
Fig 9.
Active mode: Typical supply current IDD versus temperature for different system clock frequencies
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
36 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
8 IDD (mA) 6 36 MHz(2) 4
002aaf392
48 MHz(2)
24 MHz(2)
12 MHz(1) 2
0 -40
-15
10
35
60 85 temperature (C)
Conditions: VDD = 3.3 V; sleep mode entered from flash; all peripherals disabled in the AHBCLKCTRL register (AHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal pull-up resistors disabled; BOD disabled. (1) System oscillator and system PLL disabled; IRC enabled. (2) System oscillator and system PLL enabled; IRC disabled.
Fig 10. Sleep mode: Typical supply current IDDversus temperature for different system clock frequencies
40 IDD (A) 30 3.6 V 3.3 V 2.0 V 1.8 V
002aaf394
20
10
0 -40
-15
10
35
60 85 temperature (C)
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register (PDSLEEPCFG = 0xFFFF FDFF).
Fig 11. Deep-sleep mode: Typical supply current IDD versus temperature for different supply voltages VDD
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
37 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
0.8 IDD (A) 0.6 VDD = 3.6 V 3.3 V 2.0 V 1.8 V
002aaf457
0.4
0.2
0 -40
-15
10
35
60 85 temperature (C)
Fig 12. Deep power-down mode: Typical supply current IDD versus temperature for different supply voltages VDD
9.3 Electrical pin characteristics
3.6 VOH (V) 3.2 T = 85 C 25 C -40 C
002aae990
2.8
2.4
2 0 10 20 30 40 50 IOH (mA) 60
Conditions: VDD = 3.3 V; on pin PIO0_7.
Fig 13. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level output current IOH.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
38 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
60 IOL (mA) 40 T = 85 C 25 C -40 C
002aaf019
20
0 0 0.2 0.4 VOL (V) 0.6
Conditions: VDD = 3.3 V; on pins PIO0_4 and PIO0_5.
Fig 14. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus LOW-level output voltage VOL
15 IOL (mA) 10 T = 85 C 25 C -40 C
002aae991
5
0 0 0.2 0.4 VOL (V) 0.6
Conditions: VDD = 3.3 V; standard port pins and PIO0_7.
Fig 15. Typical LOW-level output current IOL versus LOW-level output voltage VOL
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
39 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
3.6 VOH (V) 3.2
002aae992
T = 85 C 25 C -40 C
2.8
2.4
2 0 8 16 IOH (mA) 24
Conditions: VDD = 3.3 V; standard port pins.
Fig 16. Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH
10 Ipu (A) -10
002aae988
-30 T = 85 C 25 C -40 C
-50
-70
0
1
2
3
4 VI (V)
5
Conditions: VDD = 3.3 V; standard port pins.
Fig 17. Typical pull-up current Ipu versus input voltage VI
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
40 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
80 Ipd (A) 60 T = 85 C 25 C -40 C
002aae989
40
20
0 0 1 2 3 4 VI (V) 5
Conditions: VDD = 3.3 V; standard port pins.
Fig 18. Typical pull-down current Ipd versus input voltage VI
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
41 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
10. Dynamic characteristics
10.1 Flash memory
Table 10. Flash characteristics Tamb = -40 C to +85 C, unless otherwise specified. Symbol Nendu tret ter Parameter endurance retention time erase time powered unpowered sector or multiple consecutive sectors
[2]
Conditions
[1]
Min 10000 10 20 95
Typ 100
Max 105
Unit cycles years years ms
tprog
[1] [2]
programming time
0.95
1
1.05
ms
Number of program/erase cycles. Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash in blocks of 256 bytes.
10.2 External clock
Table 11. Dynamic characteristic: external clock Tamb = -40 C to +85 C; VDD over specified ranges.[1] Symbol fosc Tcy(clk) tCHCX tCLCX tCLCH tCHCL
[1] [2]
Parameter oscillator frequency clock cycle time clock HIGH time clock LOW time clock rise time clock fall time
Conditions
Min 1 40 Tcy(clk) x 0.4 Tcy(clk) x 0.4 -
Typ[2] -
Max 25 1000 5 5
Unit MHz ns ns ns ns ns
Parameters are valid over operating temperature range unless otherwise specified. Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.
tCHCL
tCLCX Tcy(clk)
tCHCX tCLCH
002aaa907
Fig 19. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
42 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
10.3 Internal oscillators
Table 12. Dynamic characteristic: internal oscillators Tamb = -40 C to +85 C; 2.7 V VDD 3.6 V.[1] Symbol fosc(RC)
[1] [2]
Parameter
Conditions
Min 11.88
Typ[2] 12
Max 12.12
Unit MHz
internal RC oscillator frequency -
Parameters are valid over operating temperature range unless otherwise specified. Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.
12.15 f (MHz) 12.05
002aaf403
VDD = 3.6 V 3.3 V 3.0 V 2.7 V 2.4 V 2.0 V
11.95
11.85 -40
-15
10
35
60 85 temperature (C)
Conditions: Frequency values are typical values. 12 MHz 1 % accuracy is guaranteed for 2.7 V VDD 3.6 V and Tamb = -40 C to +85 C. Variations between parts may cause the IRC to fall outside the 12 MHz 1 % accuracy specification for voltages below 2.7 V.
Fig 20. Internal RC oscillator frequency vs. temperature Table 13. fosc Dynamic characteristics: Watchdog oscillator Conditions
[2][3]
Symbol Parameter
Min -
Typ[1] 7.8 1700
Max -
Unit kHz kHz
internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1 frequency in the WDTOSCCTRL register; DIVSEL = 0x00, FREQSEL = 0xF in the WDTOSCCTRL register
[2][3]
[1] [2] [3]
Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages. The typical frequency spread over processing and temperature (Tamb = -40 C to +85 C) is 40 %. See the LPC111x user manual.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
43 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
10.4 I/O pins
Table 14. Dynamic characteristic: I/O pins[1] Tamb = -40 C to +85 C; 1.8 V VDD 3.6 V. Symbol tr Parameter rise time Conditions pin configured as output pin configured as output Min 3.0 Typ Max 5.0 Unit ns
tf
fall time
2.5
-
5.0
ns
[1]
Applies to standard port pins and RESET pin.
10.5 I2C-bus
Table 15. Dynamic characteristic: I2C-bus pins[1] Tamb = -40 C to +85 C.[2] Symbol fSCL Parameter SCL clock frequency Conditions Standard-mode Fast-mode Fast-mode Plus tf fall time
[4][5][6][7]
Min 0 0 0 -
Max 100 400 1 300
Unit kHz kHz MHz ns
of both SDA and SCL signals Standard-mode Fast-mode Fast-mode Plus
20 + 0.1 x Cb 4.7 1.3 0.5 4.0 0.6 0.26 0 0 0 250 100 50
300 120 -
ns ns s s s s s s s s s ns ns ns
tLOW
LOW period of the SCL clock
Standard-mode Fast-mode Fast-mode Plus Standard-mode Fast-mode Fast-mode Plus
[3][4][8]
tHIGH
HIGH period of the SCL clock
tHD;DAT
data hold time
Standard-mode Fast-mode Fast-mode Plus
tSU;DAT
data set-up time
[9][10]
Standard-mode Fast-mode Fast-mode Plus
[1] [2] [3] [4] [5]
See the I2C-bus specification UM10204 for details. Parameters are valid over operating temperature range unless otherwise specified. tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge. A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL. Cb = total capacitance of one bus line in pF.
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
44 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
[6]
The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf. In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing. The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock. tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge.
[7] [8]
[9]
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.
tf SDA 70 % 30 % tf 70 % 30 % 70 % 30 % tHD;DAT
tSU;DAT
tVD;DAT tHIGH
SCL
70 % 30 %
70 % 30 % tLOW
70 % 30 %
S
1 / fSCL
002aaf425
Fig 21. I2C-bus pins clock timing
10.6 SPI interfaces
Table 16. Symbol Tcy(PCLK) Tcy(clk) tDS Dynamic characteristics of SPI pins in SPI mode Parameter PCLK cycle time clock cycle time data set-up time in SPI mode 2.0 V VDD 3.6 V 1.8 V VDD < 2.0 V tDH tv(Q) th(Q) tDS data hold time in SPI mode
[2] [2] [2] [1]
Conditions
Min 20 40 27 36 0 0 0
Typ -
Max 10 -
Unit ns ns ns ns ns ns ns ns
SPI master (in SPI mode)
[2]
data output valid time in SPI mode data output hold time in SPI mode data set-up time in SPI mode
SPI slave (in SPI mode)
[3][4]
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
45 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Table 16. Symbol tDH tv(Q) th(Q)
[1]
Dynamic characteristics of SPI pins in SPI mode Parameter data hold time Conditions in SPI mode
[3][4] [3][4] [3][4]
Min 3 x Tcy(PCLK) + 4 -
Typ -
Max 3 x Tcy(PCLK) + 11 2 x Tcy(PCLK) + 5
Unit ns ns ns
data output valid time in SPI mode data output hold time in SPI mode
Tcy(clk) = (SSPCLKDIV x (1 + SCR) x CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the main clock frequency fmain, the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register), and the SPI CPSDVSR parameter (specified in the SPI clock prescale register). Tamb = -40 C to 85 C. Tcy(clk) = 12 x Tcy(PCLK). Tamb = 25 C; for normal voltage supply range: VDD = 3.3 V.
[2] [3] [4]
Tcy(clk)
tclk(H)
tclk(L)
SCK (CPOL = 0)
SCK (CPOL = 1) tv(Q) MOSI DATA VALID DATA VALID tDS MISO DATA VALID tDH DATA VALID CPHA = 1 th(Q)
tv(Q) MOSI DATA VALID DATA VALID tDS MISO DATA VALID tDH DATA VALID
th(Q)
CPHA = 0
002aae829
Pin names SCK, MISO, and MOSI refer to pins for both SPI peripherals, SPI0 and SPI1.
Fig 22. SPI master timing in SPI mode
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
46 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Tcy(clk)
tclk(H)
tclk(L)
SCK (CPOL = 0)
SCK (CPOL = 1) tDS MOSI DATA VALID tv(Q) MISO DATA VALID DATA VALID tDH DATA VALID th(Q) CPHA = 1
tDS MOSI DATA VALID tv(Q) MISO DATA VALID
tDH
DATA VALID th(Q) DATA VALID CPHA = 0
002aae830
Pin names SCK, MISO, and MOSI refer to pins for both SPI peripherals, SPI0 and SPI1.
Fig 23. SPI slave timing in SPI mode
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
47 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
11. Application information
11.1 ADC usage notes
The following guidelines show how to increase the performance of the ADC in a noisy environment beyond the ADC specifications listed in Table 8:
* The ADC input trace must be short and as close as possible to the LPC1111/12/13/14
chip.
* The ADC input traces must be shielded from fast switching digital signals and noisy
power supply lines.
* Because the ADC and the digital core share the same power supply, the power supply
line must be adequately filtered.
* To improve the ADC performance in a very noisy environment, put the device in Sleep
mode during the ADC conversion.
11.2 XTAL input
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with Ci = 100 pF. To limit the input voltage to the specified range, choose an additional capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave mode, a minimum of 200 mV(RMS) is needed.
LPC1xxx
XTALIN
Ci 100 pF Cg
002aae788
Fig 24. Slave mode operation of the on-chip oscillator
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF (Figure 24), with an amplitude between 200 mV(RMS) and 1000 mV(RMS). This corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V. The XTALOUT pin in this configuration can be left unconnected. External components and models used in oscillation mode are shown in Figure 25 and in Table 17 and Table 18. Since the feedback resistance is integrated on chip, only a crystal and the capacitances CX1 and CX2 need to be connected externally in case of fundamental mode oscillation (the fundamental frequency is represented by L, CL and RS). Capacitance CP in Figure 25 represents the parallel package capacitance and should not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal manufacturer (see Table 17).
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
48 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
LPC1xxx
L
XTALIN
XTALOUT =
XTAL CL CP
RS CX1 CX2
002aaf424
Fig 25. Oscillator modes and models: oscillation mode of operation and external crystal model used for CX1/CX2 evaluation Table 17. Recommended values for CX1/CX2 in oscillation mode (crystal and external components parameters) low frequency mode Crystal load capacitance CL 10 pF 20 pF 30 pF 5 MHz - 10 MHz 10 pF 20 pF 30 pF 10 MHz - 15 MHz 15 MHz - 20 MHz Table 18. 10 pF 20 pF 10 pF Maximum crystal series resistance RS < 300 < 300 < 300 < 300 < 200 < 100 < 160 < 60 < 80 External load capacitors CX1, CX2 18 pF, 18 pF 39 pF, 39 pF 57 pF, 57 pF 18 pF, 18 pF 39 pF, 39 pF 57 pF, 57 pF 18 pF, 18 pF 39 pF, 39 pF 18 pF, 18 pF
Fundamental oscillation frequency FOSC 1 MHz - 5 MHz
Recommended values for CX1/CX2 in oscillation mode (crystal and external components parameters) high frequency mode Crystal load capacitance CL 10 pF 20 pF 10 pF 20 pF Maximum crystal series resistance RS < 180 < 100 < 160 < 80 External load capacitors CX1, CX2 18 pF, 18 pF 39 pF, 39 pF 18 pF, 18 pF 39 pF, 39 pF
Fundamental oscillation frequency FOSC 15 MHz - 20 MHz 20 MHz - 25 MHz
11.3 XTAL Printed Circuit Board (PCB) layout guidelines
The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
49 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
order to keep the noise coupled in via the PCB as small as possible. Also parasitics should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller accordingly to the increase in parasitics of the PCB layout.
11.4 Standard I/O pad configuration
Figure 26 shows the possible pin modes for standard I/O pins with analog input function:
* * * * *
Digital output driver Digital input: Pull-up enabled/disabled Digital input: Pull-down enabled/disabled Digital input: Repeater mode enabled/disabled Analog input
VDD
output enable pin configured as digital output driver output
ESD PIN ESD
VDD weak pull-up pull-up enable repeater mode enable pull-down enable weak pull-down
VSS
pin configured as digital input
data input
select analog input pin configured as analog input analog input
002aaf304
Fig 26. Standard I/O pad configuration
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
50 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
11.5 Reset pad configuration
VDD VDD VDD
Rpu
ESD
reset
20 ns RC GLITCH FILTER
PIN
ESD
VSS
002aaf274
Fig 27. Reset pad configuration
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
51 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
12. Package outline
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm SOT313-2
c
y X
36 37
25 24 ZE
A
e
E HE
A A2
A1
(A 3) Lp L detail X
wM pin 1 index 48 1 12 ZD bp D HD wM B vM B vM A 13 bp
e
0
2.5 scale
5 mm
DIMENSIONS (mm are the original dimensions) UNIT mm A max. 1.6 A1 0.20 0.05 A2 1.45 1.35 A3 0.25 bp 0.27 0.17 c 0.18 0.12 D (1) 7.1 6.9 E (1) 7.1 6.9 e 0.5 HD 9.15 8.85 HE 9.15 8.85 L 1 Lp 0.75 0.45 v 0.2 w 0.12 y 0.1 Z D (1) Z E (1) 0.95 0.55 0.95 0.55 7 o 0
o
Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT313-2 REFERENCES IEC 136E05 JEDEC MS-026 JEITA EUROPEAN PROJECTION
ISSUE DATE 00-01-19 03-02-25
Fig 28. Package outline SOT313-2 (LQFP48)
LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
52 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
PLCC44: plastic leaded chip carrier; 44 leads
SOT187-2
eD y X A ZE
eE
39
29 28
bp
40
b1 wM 44 HE A e A4 A1 (A 3) k 7 e D HD 17 ZD B vMB vM A 6 18 Lp detail X
1
pin 1 index
E
0
5 scale
10 mm
DIMENSIONS (mm dimensions are derived from the original inch dimensions) A4 A1 e UNIT A A3 D(1) E(1) eD eE HD bp b1 max. min.
mm inches 4.57 4.19 0.51 0.25 0.01 3.05 0.12 0.53 0.33 0.81 0.66
HE
k
Lp
1.44 1.02
v
0.18
w
0.18
y
0.1
ZD(1) ZE(1) max. max.
2.16 2.16
16.66 16.66 16.00 16.00 17.65 17.65 1.22 1.27 16.51 16.51 14.99 14.99 17.40 17.40 1.07 0.63 0.59 0.63 0.59
45 o
0.180 0.02 0.165
0.021 0.032 0.656 0.656 0.05 0.013 0.026 0.650 0.650
0.695 0.695 0.048 0.057 0.007 0.007 0.004 0.085 0.085 0.685 0.685 0.042 0.040
Note 1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included. OUTLINE VERSION SOT187-2 REFERENCES IEC 112E10 JEDEC MS-018 JEITA EDR-7319 EUROPEAN PROJECTION
ISSUE DATE 99-12-27 01-11-14
Fig 29. Package outline PLCC44
LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
53 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads; 33 terminals; body 7 x 7 x 0.85 mm
D
B
A
terminal 1 index area
E
A
A1 c
detail X
e1 e 9 L 8 17 e b 16 v w CAB C y1 C
C y
Eh
e2
1
33
24 X
terminal 1 index area
32 Dh
25
0 Dimensions Unit mm A(1) A1 b c 0.2 D(1) 7.1 7.0 6.9 Dh 4.85 4.70 4.55 E(1) 7.1 7.0 6.9 Eh e
2.5 scale e1 e2 L
5 mm
v 0.1
w
y
y1 0.1
max 1.00 0.05 0.35 nom 0.85 0.02 0.28 min 0.80 0.00 0.23
0.75 4.85 4.70 0.65 4.55 4.55 0.60 0.45 4.55
0.05 0.08
Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. Outline version References IEC JEDEC JEITA --European projection
hvqfn33_po
Issue date 09-03-17 09-03-23
Fig 30. Package outline (HVQFN33)
LPC1111_12_13_14_1 All information provided in this document is subject to legal disclaimers. (c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
54 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
13. Abbreviations
Table 19. Acronym ADC AHB AMBA APB BOD GPIO PLL RC SPI SSI SSP TTL UART Abbreviations Description Analog-to-Digital Converter Advanced High-performance Bus Advanced Microcontroller Bus Architecture Advanced Peripheral Bus BrownOut Detection General Purpose Input/Output Phase-Locked Loop Resistor-Capacitor Serial Peripheral Interface Serial Synchronous Interface Synchronous Serial Port Transistor-Transistor Logic Universal Asynchronous Receiver/Transmitter
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
55 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
14. Revision history
Table 20. Revision history Release date 20100416 Data sheet status Product data sheet Change notice Supersedes Document ID LPC1111_12_13_14_1
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
56 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
15. Legal information
15.1 Data sheet status
Document status[1][2] Objective [short] data sheet Preliminary [short] data sheet Product [short] data sheet
[1] [2] [3]
Product status[3] Development Qualification Production
Definition This document contains data from the objective specification for product development. This document contains data from the preliminary specification. This document contains the product specification.
Please consult the most recently issued document before initiating or completing a design. The term `short data sheet' is explained in section "Definitions". The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.
15.2 Definitions
Draft -- The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet -- A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification -- The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications -- Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect. Limiting values -- Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale -- NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license -- Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control -- This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. Non-automotive qualified products -- Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the
(c) NXP B.V. 2010. All rights reserved.
15.3 Disclaimers
Limited warranty and liability -- Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes -- NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use -- NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
Product data sheet
Rev. 01 -- 16 April 2010
57 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
Quick reference data -- The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.
15.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. I2C-bus -- logo is a trademark of NXP B.V.
16. Contact information
For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com
LPC1111_12_13_14_1
All information provided in this document is subject to legal disclaimers.
(c) NXP B.V. 2010. All rights reserved.
Product data sheet
Rev. 01 -- 16 April 2010
58 of 59
NXP Semiconductors
LPC1111/12/13/14
32-bit ARM Cortex-M0 microcontroller
17. Contents
1 2 3 4 4.1 5 6 6.1 6.2 7 7.1 7.2 7.3 7.4 7.5 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pinning information . . . . . . . . . . . . . . . . . . . . . . 5 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional description . . . . . . . . . . . . . . . . . . 18 ARM Cortex-M0 processor . . . . . . . . . . . . . . . 18 On-chip flash program memory . . . . . . . . . . . 18 On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 18 Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 18 Nested Vectored Interrupt Controller (NVIC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.5.2 Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 20 7.6 IOCONFIG block . . . . . . . . . . . . . . . . . . . . . . 20 7.7 Fast general purpose parallel I/O . . . . . . . . . . 20 7.7.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.8 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.8.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7.9 SPI serial I/O controller. . . . . . . . . . . . . . . . . . 21 7.9.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7.10 I2C-bus serial I/O controller . . . . . . . . . . . . . . 21 7.10.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.11 10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.12 General purpose external event counter/timers . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.13 System tick timer . . . . . . . . . . . . . . . . . . . . . . 23 7.14 Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 23 7.14.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.15 Clocking and power control . . . . . . . . . . . . . . 24 7.15.1 Crystal oscillators . . . . . . . . . . . . . . . . . . . . . . 24 7.15.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 24 7.15.1.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 25 7.15.1.3 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 25 7.15.2 System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.15.3 Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.15.4 Wake-up process . . . . . . . . . . . . . . . . . . . . . . 25 7.15.5 Power control . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.15.5.1 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.15.5.2 Deep-sleep mode . . . . . . . . . . . . . . . . . . . . . . 26 7.15.5.3 Deep power-down mode . . . . . . . . . . . . . . . . 26 System control . . . . . . . . . . . . . . . . . . . . . . . . Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Brownout detection . . . . . . . . . . . . . . . . . . . . Code security (Code Read Protection - CRP) . . . . . . . . . . . 7.16.4 APB interface . . . . . . . . . . . . . . . . . . . . . . . . . 7.16.5 AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.16.6 External interrupt inputs . . . . . . . . . . . . . . . . . 7.16.7 Memory mapping control . . . . . . . . . . . . . . . . 7.17 Emulation and debugging . . . . . . . . . . . . . . . 8 Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 9 Static characteristics . . . . . . . . . . . . . . . . . . . 9.1 BOD static characteristics . . . . . . . . . . . . . . . 9.2 Power consumption . . . . . . . . . . . . . . . . . . . 9.3 Electrical pin characteristics. . . . . . . . . . . . . . 10 Dynamic characteristics. . . . . . . . . . . . . . . . . 10.1 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 10.2 External clock. . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Internal oscillators . . . . . . . . . . . . . . . . . . . . . 10.4 I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6 SPI interfaces. . . . . . . . . . . . . . . . . . . . . . . . . 11 Application information . . . . . . . . . . . . . . . . . 11.1 ADC usage notes. . . . . . . . . . . . . . . . . . . . . . 11.2 XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 XTAL Printed Circuit Board (PCB) layout guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 Standard I/O pad configuration . . . . . . . . . . . 11.5 Reset pad configuration . . . . . . . . . . . . . . . . . 12 Package outline. . . . . . . . . . . . . . . . . . . . . . . . 13 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 14 Revision history . . . . . . . . . . . . . . . . . . . . . . . 15 Legal information . . . . . . . . . . . . . . . . . . . . . . 15.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 15.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Contact information . . . . . . . . . . . . . . . . . . . . 17 Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.16 7.16.1 7.16.2 7.16.3 26 26 27 27 27 27 28 28 28 29 30 35 35 38 42 42 42 43 44 44 45 48 48 48 49 50 51 52 55 56 57 57 57 57 58 58 59
Please be aware that important notices concerning this document and the product(s) described herein, have been included in section `Legal information'.
(c) NXP B.V. 2010.
All rights reserved.
For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 16 April 2010 Document identifier: LPC1111_12_13_14_1


▲Up To Search▲   

 
Price & Availability of LPC1111FHN33101

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X